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Intergenerational elasticity of earnings

- the literature is developing in two directions:

1. access to improved databases (Chetty and coauthors);

2. access to some data for a larger number of countries (World
Bank - LSMS).

- our contribution: a criterion to maximize comparability
with suboptimal data (Brunori, Peragine, Serlenga, 2019).



Intergenerational elasticity of earnings

y; = Bo+ By; + €

- y¢ is the logarithm of the child’s permanent income;
- y? is the logarithm of the parent’s permanent income;

- [ is the intergenerational elasticity of income (IGE).



Two-Sample Two-Stage Least Squares (TSTSLS)

- Bjorklund and Jéntti (1997);

- main sample: information on adult income and their
parents’ socio-economic characteristics;

- auziliary sample: earlier survey reporting pseudo-fathers’

income and same socio-economic characteristics.



TSTSLS: first step

yr =7 + 0

ps
Y

is the income of the pseudo-parents;
z are instrumental (imputer) variables;

~ is estimated by OLS.



TSTSLS: second step

yi = Bo+ BY; +wi

where g = 420

p

z; are characteristics of the real fathers;

and BTSTSLS is IGE.



TSTSLS: biases

1. endogeneity:
yi = Bo+ Byi + 2z + €

2. first-stage incorrect prediction : (R? < 1).



Sensitivity to model specification

Using Jerrim et al. (2016) notation:

PlimBrsrsrs = B+ 72 (1 — R?)

- the higher R?, the lower the bias;

- the closer 2 to 0, the lower the bias.



Model selection

larger R? improves our estimates?

it can also increase s;
- R? monotonically increase with # of regressors in sample
- but we are interested in predicting y of unseen fathers.

- the proper objective function si R? out-of-sample.



Model selection, cnt.

- maximizing ability to predict out-of-sample is what

machine learning algorithms do.

- solving the bias-variance trade-off

MSE =F [(yo - f(zo))ﬂ = Var(f(z0))+|Bias(f(z0))]*+var(6)
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Model selection

- to minimize MSE out-of-sample is equivalent to maximize
R? out-of-sample
MSE
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k-fold cross validation
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Model selection

- Standard approach: specify a few linear and additive mode
and discuss their credibility;
- two options:
1. estimate MSE for all possible models (feasible in this case);

2. regularization of linear models with interactions.



Regression regularization

- OLS search for the parameters that minimize MSE in

sample;

- shrinking methods search for parameters that minimize
MSE out-of-sample;

- general approach: penalize models with many parameters
and models with large coefficients.



Ridge regression

Ridge regression shrinks regression coefficients by imposing a
penalty on their size:
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Ridge regression

Ridge regression shrinks regression coefficients by imposing a
penalty on their size:
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This is equivalent to:
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Ridge regression
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Regression regression

- contrary to other parsimony criteria (BIC, AIC) X is not
predetermined

- ridge regression is tuned searching for A that produces
lowest out-of-sample MSE by cross-validation



Least absolute shrinkage and selection operator (Lasso)

Lasso performs both variables selection and shrinkage by
imposing a penalty on their absolute size:
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Lasso

Lasso shrinks regression coefficients by imposing a penalty on
their absolute size:
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This is equivalent to:
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Lasso

Lasso is also tuned searching for A that produces lowest
out-of-sample MSE by cross-validation;

The non linearity of the constraint forces some coefficient
to be exactly zero (a variables selection alogirthm);

Zou and Hastie (2005) have proposed a to use a weighted
average of the two methods: elastic net.



Elastic net

Elastic net is a weighted average of Lasso and ridge algorithm:
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Elastic net

- Tuning the elastic net implies searching for the couple «
and A that minimizes MSE:

- when o = 0 we are back to ridge regression;
- when a = 1 we are using a Lasso;

- when A = 0 we are using standard OLS.



Data - US

- main sample: wave 2011 - Panel Survey of Income
Dynamics (PSID);

- 1,061 sons, aged 30-60, with positive earnings and
non-missing background information about their fathers;

- auxiliary sample of 1,860 pseudo-fathers aged 30-60 with
positive earnings using the 1982 wave of the PSID.



Data

- first-stage variables: education, occupation, industry, and
race, plus all possible pairwise interactions (1,023 models);

- update Bjorklund and Jantti (1997);

- obtain benchmark longitudinal IGE.



Model complexity and out-of-sample R?

TSTSLS Regularization
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Model complexity and Srsrsis
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Elastic net regularization
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a = 0.010, A = 0.402.



Brsrsrs sensitivity to model specification

IGE s.e. First-Stage R?>  First-Stage R?
(out-of-sample)  (in-sample)

Benchmark  0.492 (0.062)
B&J, 1997  0.478 (0.073) 0.205 0.222
Best model  0.496 (0.078) 0.261 0.324
top 5 models  0.487 (0.074) 0.260 0.317

top 10 models  0.494 (0.080) 0.260 0.319
Sample size 1,061 1,061 1,860 1,860




Conclusions

- non-arbitrary selection criterion that produces non-trivial
change in IGE;

- e.g. South Africa 0.62 — 0.69;

- open question: under what condition regularization does
not exacerbate upward bias due to endogeneity?



