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Intergenerational elasticity of earnings

- the literature is developing in two directions:

1. access to improved databases (Chetty and coauthors);

2. access to some data for a larger number of countries (World

Bank - LSMS).

- our contribution: a criterion to maximize comparability

with suboptimal data (Brunori, Peragine, Serlenga, 2019).



Intergenerational elasticity of earnings

yci = β0 + βypi + εi

- yci is the logarithm of the child’s permanent income;

- ypi is the logarithm of the parent’s permanent income;

- β is the intergenerational elasticity of income (IGE).



Two-Sample Two-Stage Least Squares (TSTSLS)

- Björklund and Jäntti (1997);

- main sample: information on adult income and their

parents’ socio-economic characteristics;

- auxiliary sample: earlier survey reporting pseudo-fathers’

income and same socio-economic characteristics.



TSTSLS: first step

ypsi = γzpsi + θi (1)

ypsi is the income of the pseudo-parents;

z are instrumental (imputer) variables;

γ is estimated by OLS.



TSTSLS: second step

yci = β0 + βŷpi + ωi

where ŷpi = γ̂zpi ;

zpi are characteristics of the real fathers;

and β̂TSTSLS is IGE.



TSTSLS: biases

1. endogeneity:

yci = β0 + βypi + γ2z
p
i + εi (2)

2. first-stage incorrect prediction : (R2 < 1).



Sensitivity to model specification

Using Jerrim et al. (2016) notation:

PlimβTSTSLS = β + γ2
(
1−R2

)

- the higher R2, the lower the bias;

- the closer γ2 to 0, the lower the bias.



Model selection

- larger R2 improves our estimates?

- it can also increase γ2;

- R2 monotonically increase with # of regressors in sample

- but we are interested in predicting y of unseen fathers.

- the proper objective function si R2 out-of-sample.



Model selection, cnt.

- maximizing ability to predict out-of-sample is what

machine learning algorithms do.

- solving the bias-variance trade-off

MSE = E
[
(y0 − f̂(z0))

2
]

= V ar(f̂(z0))+[Bias(f̂(z0))]
2+var(θ)



MSE out-of-sample



Model selection

- to minimize MSE out-of-sample is equivalent to maximize

R2 out-of-sample

(1−R2) = n
MSE∑n

i=1(yi − ȳ)2



R2 out-of-sample



k-fold cross validation



Model selection

- Standard approach: specify a few linear and additive mode

and discuss their credibility;

- two options:

1. estimate MSE for all possible models (feasible in this case);

2. regularization of linear models with interactions.



Regression regularization

- OLS search for the parameters that minimize MSE in

sample;

- shrinking methods search for parameters that minimize

MSE out-of-sample;

- general approach: penalize models with many parameters

and models with large coefficients.



Ridge regression

Ridge regression shrinks regression coefficients by imposing a

penalty on their size:

β̂RIDGE = argmin
β


n∑
i=1

yi − β0 − p∑
j=1

xi,jβj

2

+ λ

p∑
j=1

β2j


(3)



Ridge regression
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This is equivalent to:

β̂RIDGE = argmin
β


n∑
i=1

yi − β0 − p∑
j=1

xi,jβj

2
subject to

p∑
j=1

β2j ≤ t



OLS



Ridge regression



Regression regression

- contrary to other parsimony criteria (BIC, AIC) λ is not

predetermined

- ridge regression is tuned searching for λ that produces

lowest out-of-sample MSE by cross-validation



Least absolute shrinkage and selection operator (Lasso)

Lasso performs both variables selection and shrinkage by

imposing a penalty on their absolute size:

β̂LASSO = argmin
β

1

2

n∑
i=1

yi − β0 − p∑
j=1

xi,jβj

2

+ λ

p∑
j=1

|βj |


(5)
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Lasso



Lasso

- Lasso is also tuned searching for λ that produces lowest

out-of-sample MSE by cross-validation;

- The non linearity of the constraint forces some coefficient

to be exactly zero (a variables selection alogirthm);

- Zou and Hastie (2005) have proposed a to use a weighted

average of the two methods: elastic net.



Elastic net

Elastic net is a weighted average of Lasso and ridge algorithm:

β̂NET = argmin
β

1

2

n∑
i=1

yi − β0 − p∑
j=1

xi,jβj

2 (7)

subject to : (1− α)

p∑
j=1

|βj |+ α

p∑
j=1

β2j ≤ t



Elastic net



Elastic net

- Tuning the elastic net implies searching for the couple α

and λ that minimizes MSE:

- when α = 0 we are back to ridge regression;

- when α = 1 we are using a Lasso;

- when λ = 0 we are using standard OLS.



Data - US

- main sample: wave 2011 - Panel Survey of Income

Dynamics (PSID);

- 1,061 sons, aged 30-60, with positive earnings and

non-missing background information about their fathers;

- auxiliary sample of 1,860 pseudo-fathers aged 30-60 with

positive earnings using the 1982 wave of the PSID.



Data

- first-stage variables: education, occupation, industry, and

race, plus all possible pairwise interactions (1,023 models);

- update Björklund and Jäntti (1997);

- obtain benchmark longitudinal IGE.



Model complexity and out-of-sample R2



Model complexity and βTSTSLS



Elastic net regularization
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βTSTSLS sensitivity to model specification

IGE s.e. First-Stage R2 First-Stage R2

(out-of-sample) (in-sample)

Benchmark 0.492 (0.062)

B&J, 1997 0.478 (0.073) 0.205 0.222

Best model 0.496 (0.078) 0.261 0.324

top 5 models 0.487 (0.074) 0.260 0.317

top 10 models 0.494 (0.080) 0.260 0.319

Sample size 1,061 1,061 1,860 1,860



Conclusions

- non-arbitrary selection criterion that produces non-trivial

change in IGE;

- e.g. South Africa 0.62→ 0.69;

- open question: under what condition regularization does

not exacerbate upward bias due to endogeneity?


